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Abstract— A new active control method is proposed for two 

different chaotic systems synchronization. Based on compound 

matrices, this method is compared with the generalized active 

control one through a numerical example. The Shimizu-Morioka 

and Pan chaotic systems are considered in order to show the 

advantages of the proposed method. 

Index Terms— chaos, synchronization, active control, 

compound matrices. 

I. INTRODUCTION  

     Chaos synchronization is an attractive phenomenon in 

science and technology that involves a variety of real-life 

processes. Secure telecommunication, biology, chemistry and 

medicine are some fields where chaos synchronization occurs 

or can be exploited. 

     Chaotic systems are nonlinear systems distinguished by 

their high sensitivity to initial conditions variation. In 1990, 

Pecora and Carrol proved [1] that two chaotic systems can 

synchronize. This means that a first system (response system), 

can follow the trajectories of a second one (drive system), 

when a suitable control law is applied.  

Many synchronization schemes have been proposed [2, 3, 4, 

5] such as nonlinear control [6], nonlinear observer [4, 7, 8], 

adaptive control [9], active control [10, 11, 12], fuzzy control 

[13, 14], and backstepping control [15, 16]… 

In this paper, we propose an active control scheme based on 

the concept of compound matrices, in order to synchronize 

two different chaotic systems. 

     Compound matrices [17, 18], due to their interesting 

spectral properties, are a powerful tool for stability study [17, 

19]. In [18], stability of matrices and existence of Hopf 

bifurcation in dynamical systems analysis are investigated 

using the compound matrices formalism.  

The method proposed in this work, which is a variant of active 

control, is compared to the generalized active control 

technique. For this purpose, we apply both techniques to a 

concrete example: synchronization of the Shimizu-Morioka 

and Pan chaotic systems. Numerical simulations are 

performed to illustrate the effectiveness of the proposed 

method and its advantages. 
 

In the second section we present the problem statement and 

introduce the mathematical background of the proposed 

method which will be detailed in Section III.  

The problem of synchronizing the Shimizu-Morioka and Pan 

chaotic systems is considered in Section IV, for an illustrative 

purpose. Obtained results, are compared to those obtained by 

the generalized active method.  

II. PRELIMINARIES 

     Given two chaotic systems, as described by (1) and (2) 

corresponding respectively to a drive and a response system, 

our aim is to design a control law U such that these two 

systems synchronize. 
 

)(XfX =�  (1) 

UYgY += )(�  (2) 
 

),...,( 1 nxxX = and ),...,( 1 nyyY =  are the state vectors of the two 

systems and  ),...,( 1 nuuU = is the control vector depending on 

X and Y to be calculated. 

Let ),...,(),...,( 111 nnn xyxyeee −−==  be the synchronization 

error vector. Then synchronization is achieved when the error 

dynamical system (3) is stable.  
 

),,( YXehe =�  (3) 
 

     Our proposed approach is based on the compound matrix 

method. So, we give a brief overview, introduced in [18, 19], 

about this mathematical concept. 

Let )(RnM be the linear space of matrices of size n x n with 

entries in R  and let A be a matrix in )(RnM and k an integer in 

[1,n]. We note by ∧  the exterior product in n
R .  

 

Definition 1 [17, 18] The additive compound matrix ][kA  

of A , with respect to the canonical basis in the th
k exterior 

product space nk
R∧ is a linear operator on nk

R∧ and can be 

defined on a decomposable element kuuu ∧∧∧ ...21  by 

∑
=

∧∧∧∧=∧∧

k

i

kik
k uAuuuuA

1

11
][ ......)...( ,      

n
kuu R∈∧∧∀ ...1 .

 

(4) 
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Relations between entries ( ija ) of A and those of ][kA  ( ija~ ) 

are linear. 

Let i be an integer in [1, k
nC ]. If we note by (i) = ( kii ,...,1 ) the 

th
i member in the lexicographic ordering of integer k-tuples 

such that nii k ≤<<≤ ...1 1 , we can obtain the additive 

compound matrix entries from the following result. 

 
 Proposition 1 [17, 18] 
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(5) 

In particular, we have AA =]1[ , )(][
AtraceA

n =  and for A 

)(3 RM∈
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Definition 2 [18] Let . a vector norm on )(RnM and A a 

matrix in )(RnM .  

The Lozinskiǐ measure (logarithmic measure) µ of A with 

respect to .  is defined by 
 

h

hAI
A

h

1
lim)(

0

−+
=

+→
µ  (7) 

 

As examples, Lozinskiǐ measure of a matrix A with respect to 

the three common vector norms   

∑=
i

ixx
1

, 
2

2 ∑=
i

ixx  and ii xx sup=
∞

 are 
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()(2

T
AA

sA
+
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and )(sup)(

,

∑
≠

∞ +=

ijj

ijii
i

aaAµ  

(8) 

 

where s(A) denotes the maximum real part of the eigenvalues 

of A. 
 

     Due to their interesting spectral properties, compound 

matrices present a powerful tool for the stability study of 

matrices. 

We present, in the following, an important result about 

compound matrices that will be used in the sequel. 
 

 

 

 

Theorem 1 [18] If 0)det()1( >− A
n  then A is stable if and only 

if there exists a Lozinskiǐ measure µ  on )(RmM  such that 

0)( ]2[ <Aµ , 2
nCm = . 

III. PROPOSED ACTIVE CONTROL 

     Given the state vectors ),...,( 1 nxxX =  for the drive system 

and ),...,( 1 nyyY =  for the response system, we define the 

extended state vectorϕ such as 
 

),...,,,...,( 11 nn yyxx=ϕ  (9) 
 

The synchronization error becomes 
 

ϕTe =  (10) 

with )(),( 2, Rnnnn MIIT ∈−= ; nI denotes the identity matrix in 

)(RnM . 

We suppose that the error dynamical system (3) can be 

expressed as  
 

UNe += ϕϕ )(�  (11) 
 

Our purpose is to find a state feedback 

law ϕϕ).(KU −= , )()( 2, RnnMK ∈ϕ , stabilizing the system  
 

ϕϕϕ )()(( KNe −=�  (12) 
 

If we look for a special choice of the matrix )(ϕK such that 
 

TKAKN ),()()( ϕϕϕ =−  (13) 
 

Error system description  (12) becomes in the form: 
 

ϕϕ TKAe ),(=�  (14) 
 

where )(),( RnMKA ∈ϕ is a matrix to be expressed in terms of 

the gain matrix entries.  

By substituting (10) in (14) we obtain the new formulation of 

the dynamical error system  
 

eKAe ),( ϕ=�  (15) 
 

Remark: Given the particular structure of matrix T and 

partitioning )(ϕN and )(ϕK into two n x n matrices 

( )(1 ϕN , )(2 ϕN ) and ( )(1 ϕK , )(2 ϕK ), equation (13) reduces to 

 

),()()( 11 ϕϕϕ KAKN −=−  (16) 
 

Then, the second gain matrix block )(2 ϕK will be deduced 

from the relation 
 

),()()( 22 ϕϕϕ KAKN =−  (17) 

 

Using the description detailed above for the error dynamical 

system, the synchronization of the two chaotic systems (1) and 

(2) consists of stabilizing the system (15). 

For this aim, we propose the following results. 
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Theorem 2 If there exist two matrices )(1 ϕK  

and )(2 ϕK )(RnM∈ ,with )()()()( 2211 ϕϕϕϕ KNNK −=− and  

such that the matrix )()(),( 11 ϕϕϕ NKKA −= fulfils the two 

following conditions: 

(i ) 0)),(det()1( >− ϕKA
n  

(ii) 0)),(( ]2[ <ϕµ KA  for some Lozinskii measure µ on 

)(RmM ,  2
nCm =  

then, global synchronization is achieved between the drive 

system (1) and the response system (2) by applying the control 

law 

          
YKXKU )()( 21 ϕϕ −−=  (18) 

 

Proof    Immediate by applying theorem 1 to study the 

stability of the error dynamical system (15).  
 

Corollary 1 Global synchronization between the chaotic 

systems described by (1) and (2), with respect to the error 

dynamical system description (15), is achieved by applying 

the control law 
 

           
YKXKU )()( 21 ϕϕ −−=  (19) 

 

if there exist  two matrices )(1 ϕK  and )(2 ϕK )(RnM∈  

with )()()()( 2211 ϕϕϕϕ KNNK −=−
 
and such that the matrix

)()(),( 11 ϕϕϕ NKKA −= fulfils the two following conditions: 

(i ) 0)),(det()1( >− ϕKA
n  

(ii) mj ..1=∀ , 0~~

,..1

<+ ∑
≠= jimi

ijjj aa  with ija~  being the 

entries of ),(]2[ ϕKA  and 2
nCm = . 

Proof    A direct application of theorem 2 by considering the 

Lozinskiǐ measure of )~(),(
]2[

ijaKA =ϕ with respect to the norm

∑=

i

ixx
1

 :  

 

)~~(sup)
~

(

,

1 ∑
≠

+=

jii

ijjj
j

aaAµ  

It’s clear that 0)
~

(1 <Aµ  if for every column j of A
~

, 

0~~

,

<+ ∑
≠ jii

ijjj aa . 

 

Corollary 2 Global synchronization between the chaotic 

systems described by (1) and (2), with respect to the error 

dynamical system description (15), is achieved by applying 

the control law 
 

          
YKXKU )()( 21 ϕϕ −−=  (20) 

 

if there exist  two matrices )(1 ϕK  and )(2 ϕK )(RnM∈  

with )()()()( 2211 ϕϕϕϕ KNNK −=−  and such that the matrix

)()(),( 11 ϕϕϕ NKKA −= fulfils the two following conditions: 

(i ) 0)),(det()1( >− ϕKA
n  

(ii) mi ..1=∀ , 0~~

,..1

<+ ∑
≠= ijmj

ijii aa  with ija~  being the 

entries of ),(]2[ ϕKA  and 2
nCm = . 

 

 

Proof     As in corollary 1 and by considering the Lozinskiǐ 

measure of )~(),(
]2[

ijaKA =ϕ with respect to the norm

i
i

xx sup=
∞

 , it comes  

)~~(sup)
~

(

,

∑
≠

∞ +=

ijj

ijii
i

aaAµ  

0)
~

( <∞ Aµ  if for every row i of A
~

, 0~~

,

<+ ∑
≠ijj

ijii aa . 

 

 

     In the next section, we give an application example for the 

use of the proposed method. 

IV. APPLICATION TO THE SYNCHRONIZATION OF SHIMIZU-

MORIOKA AND PAN CHAOTIC SYSTEMS 

     To test the proposed method, let’s consider the 

synchronization between Shimizu-Morioka [21, 23] and Pan 

chaotic systems [22].  
 

The Shimizu-Morioka system [21] is described by 
  










+−=

−−=

=

2
133

31212

21

xxx

xxxxx

xx

α

λ

�

�

�

 (21) 

 

with 1x , 2x and 3x  the state variables of the system and λ and 

α  its parameters. The Shimizu-Morioka system is chaotic 

when we have 605.0=λ  and 549.0=α . 
 

The Pan chaotic system [22], considered here as a response 

system, is ruled by 









+−=

+−=

+−=

33213

23112

1121 )(

ubyyyy

uyycyy

uyyay

�

�

�

 (22) 

 

1y , 2y and 3y  are the state variables of the system, a, b and c 

its parameters and 1u , 2u and 3u  the control variables. 

The autonomous Pan system is chaotic for 10=a  
3

8
=b  

16=c . 
 

 

Defining the error sates by 
 

111 xye −= , 222 xye −=  and 333 xye −= , (23) 
 

yields the synchronization error dynamical system  
 










+−+−=

+++−−=

+−−=

3
2

133213

231213112

12121 )(

uxxbyyye

uxxxxyycye

uxyyae

α

λ

�

�

�

 (24) 

 

The error states vector and the error dynamical system can be 

written respectively under the form (10) and (12) with  



International Conference on Control, Engineering & Information Technology (CEIT’14) 

Proceedings - Copyright IPCO-2014, pp. 322-328     

ISSN 2356-5608 

 

















−

−

−

=

100100

010010

001001

T    and 

















−−

−−

−−

=

byx

ycx

aa

N

11

11

00

01

0010

)(

α

λϕ  

 

(25) 

 

By solving the matrix equations (16) and (17) we obtain the 

expression of matrix )(ϕA   
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(26) 

 

and the relations between the two blocks )(1 ϕK and )(2 ϕK  of 

matrix )(ϕK . 

 

The expression of the compound matrix )(]2[ ϕA  is deduced 

from )(ϕA  
 


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
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A possible choice of the gain matrix block )(1 ϕK , with respect 

to the conditions of corollary 1, is the following 
 















 −−

=

000

000

00

)(

1

1

ε

ϕ

x

K  (29) 

 

where ε  is a positive constant to be calculated.  

This leads, according to the relations in (27), to the second 

block matrix )(2 ϕK  given by 
 

















−−

−−

−++−

=
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yxc
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K

α

λ

ε

ϕ
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11

1

2 1

01

)(  (30) 

Under this choice, the new expression of the compound matrix 

)(]2[ ϕA  and the determinant of the matrix )(ϕA are 

respectively 
 











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
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x
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A  (31) 

2
11))(det( xxA −+−−= αλαελαϕ  (32) 

 

Corollary 1 conditions 












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<−−

<−−

0

0
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0

1 xx αλαελα
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 are 

equivalent to 




<−−

<−

01

01

αε

λε
  

which reduces, given the numerical values of λ  and α , to 

653.1
1

=>
λ

ε . 

Finally, by fixing 2=ε , a possible choice for the gain matrix 

)(ϕK  is 
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Under this choice, the chaotic systems defined by (1) and (2) 

synchronize when applying the control law ϕϕ)(KU −= . 

Numerical simulations, using the fourth order Runge-Kutta 

method with a time step size of 0.001, are given in Fig. 1. 

The initial conditions considered for the drive and response 

systems are respectively  (0.1, 0.2, 0.1) and (-0.5, 0.4, 0.5). 

V. COMPARISON WITH GENERALIZED ACTIVE CONTROL 

     The Active Control method consists of calculating an 

appropriate state feedback controller U that stabilizes the error 

dynamical system (3). 

In the Generalized Active Control we assume that the system 

(3) can be written, by separating the linear and the nonlinear 

parts, in the form 

 
UYXeeAe +Φ+= ),,(.�  (34) 

 

A  is a constant matrix in )(RnM  and the control law U  is such 

that 

eKYXeU g−Φ−= ),,(  (35) 

 

where )(Rng MK ∈ is a linear gain matrix. Equation (34) 

becomes 

 

eKAe g )( −=�  (36) 

 

Therefore, by calculating the convenient gain matrix gK  

stabilizing the system (36), and substituting it in equation (35) 

we obtain the control law U leading to the synchronization 

between the drive and the response systems. 

 

     For comparative purpose, we consider the same example of 

Shimizu-Morioka and Pan chaotic systems ruled by equations 

(21) and (22).  
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The error dynamical system given by (24) can be expressed in 

the from (34), where 
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One possible choice for the gain matrix gK  for which the 

stability of the system (36) is guarantied is the following 
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


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This choice imposes to the system (36) the eigenvalues -2.67, 

-3.35, -28.65, which implies its stability. 

The resulting control law is given by (39) and simulation 

results are illustrated in Fig. 1 using the same simulation 

parameters as section 5. 

In Table I. we recapitulate the control laws proposed for each 

method. We remark that in both cases three controllers are 

needed ( 1u , 2u and 3u ) and all the three state variables of the 

response system are used. 

 

 

TABLE I.  COMPARISON OF THE CONTROL LAW EXPRESSIONS 

 
Method Control law expression 

Generalized  
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Control 

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Proposed  

Active 

Control 

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−+−−++=
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Nevertheless, only one state variable of the drive system is 

used in our proposed control law ( 1x ), against 3 for the 

generalized active control ( 1x , 2x and 3x ). This is a very 

important advantage in practical implementation.  

 

According to the simulations results, it’s clear that the 

generalized active control performs better, especially in terms 

of rapidity. But we assume that other choices for the proposed 

gain matrix can be made to enhance the synchronized system 

behaviour. 

 

 

 

 
 
Fig. 1. Evolution of the synchronization error states of Example 1, when 

control is de-activated (on the left) and with control switched on at time = 0 

(on the right)  

(dashed line: generalized active control, solid line: proposed active control)  

 

 

The complexity is similar in both controls but the design 

seems to be easier by the proposed method. On the one hand, 

the generalized active control requires usually an analytic 

development to express the relation between the 

synchronization error and its derivative. This can be done 

easily by programming in our method, using directly the 

extended state vector and exploiting the controller itself to 

reach the required expression form.   

On the other hand, it is much easier to manipulate inequalities 

than calculating eigenvalues and this is another significant 

advantage for the proposed method. 

VI. CONCLUSION 

     This paper proposed a new active control design method 

for chaotic systems synchronization. The method is based on 

compound matrices, and has been successfully applied to 

synchronize the Shimizu-Morioka and Pan chaotic systems. 

The simulation results are compared to those obtained by 

applying the generalized active technique. The proposed 

active control didn’t perform better than the generalized active 

control in terms of rapidity, but presents some interesting 

advantage in practical implementation. Besides its flexibility 

and simplicity, the proposed method allows easier choice of 

the feedback gain matrix. This permits, inter alia, to reduce the 

drive state variables implied in the control law, which is a 

crucial issue in telecommunication application.   

The proposed method can be enhanced to attain better 

performance, especially in terms of rapidity.   
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